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Spectral Methods

Motivation for high order discretisation.

1 Previously, we have mainly focused on either finite
difference (collocation methods), finite element (Galerkin
methods), or finite volume (sub-domain methods) for
solving CFD problems.

2 In addition, we have concentrated on lower order
discretization methods. First or second order Taylor
expansions.

3 In todays seminar we will use high order discretization
method where the unknowns are expanded in polynomials
of an order higher than 3.
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Spectral Methods

Motivation for high order discretisation continued.

If we are interested in studying vortex interaction using
e.g. a FV method, where we strive for 2nd order accuracy,
the accuracy of the interaction of vortices is of zero order!



Dansis
seminar

2018

Spectral
method

Motivation

Framework

DiffGeoDansis

Non-isotropic

Darcy

resultsA

Method of Weighted Residual

Let u(x) be the solution of the problem

L[u] = f in Ω

B[u] = g on ∂Ω,

where L is a (non-linear) differential operator and B represents
the boundary operator. The unknown solution function is
approximated by a set of basis (also called expansion or trial
functions) functions of the form

uN(x) =
N∑
i=0

aiφi

where uN(x) is an approximate solution.



Dansis
seminar

2018

Spectral
method

Motivation

Framework

DiffGeoDansis

Non-isotropic

Darcy

resultsA

Method of Weighted Residual

The basis function are often chosen to linear independent
function and the unknown expansion coefficients ai are in
general a function of the expansion order N. Substituting the
expansion into the differential operator leaves an error function,
the residual, r(x),

r(x) = L[uN ]− f .

Having chosen a set of N basis functions we need N conditions
to solve for the N expansion coefficients ai . Introducing a test
function ψi (x), we force the inner product∫

Ω
r(x)ψi (x)dx = (r , ψi )
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Method of Weighted Residual

to vanish for i = 0, 1, ...,N. The error is set to zero in an
average sence, (r , ψ) = 0 for i = 0, 1, ...,N. In choosing the
N + 1 test functions we have N + 1 conditions to determine the
N + 1 expansion coefficients.

1 The Galerkin method ψi = φi
2 The collocation method ψi = δ(x − xi )

3 The Least Squares method ψi = ∂r
∂ai
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Basis functions

The most popular choice of basis functions are the
eigenfunctions of the singular Sturm-Liouville problem and out
of them we mainly use two sets of polynomials - the Chebychev
and the Legendre polynomials.
The eigenfunctions, φi (x), are mutually orthogonal with
respect to the positive weight function w(x)∫ 1

−1
φi (x)φj(x)w(x)dx = 0 for i 6= j
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Spectral Methods
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Spectral Methods



Dansis
seminar

2018

Spectral
method

Motivation

Framework

DiffGeoDansis

Non-isotropic

Darcy

resultsA
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Spectral Methods
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Spectral Methods - time-dependent hyperbolic
problem

Solve the linear time dependent 1D convection equation
ut + ux = 0 using an implicit Euler for time integration and FV
for spatial discretisation. u0(x) = 0.5 ∗ (1− cos(2πx))
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Spectral Methods - time-dependent hyperbolic
problem

Solve the linear time dependent 1D convection equation
ut + ux = 0 using spectral time integration and SEM for spatial
discretisation. u0(x) = 0.5 ∗ (1− cos(2πx))
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Spectral Methods - time-dependent hyperbolic
problem

Solve the linear time dependent 1D convection equation
ut + ux = 0 using spectral time integration and spectral Least
Squares for spatial discretisation. u0(x) = 0.5 ∗ (1− cos(2πx))
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Spectral Methods - time-dependent hyperbolic
problem

Solve the linear time dependent 1D convection equation
ut + ux = 0 using spectral time integration and SEM for spatial
discretisation. u0: square wave.
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Spectral Methods - time-dependent hyperbolic
problem

Solve the linear time dependent 1D convection equation
ut + ux = 0 using spectral time integration and spectral least
squares for spatial discretisation. u0: square wave.
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The use of a mimetic method

Also called structure preserving

Mimics the nature of the problem (preserves its structure)

A physical model typically consists of two kinds of relations:

Topological (e.g. conservation and equilibrium laws)

Constitutive (e.g. relations between stress and strains etc.)

Topological relations ought to be exact, but typical numerical
schemes only satisfies this when the element size approaches
zero.

Numerical approximations are located in the discretisation of
the constitutive equations, just as in the physical world.
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Simple grid
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Incidense matrices



Dansis
seminar

2018

Spectral
method

Motivation

Framework

DiffGeoDansis

Non-isotropic

Darcy

resultsA

Staggered grid
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De Rham complex
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De Rham complex continues
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Differential forms

A PDE (e.g. NS) can be solved using differential geometry. This allows us to
rephrase differential equations in such a way that its conserved quantity is
preserved. This ensures that for example the continuity equation is conserved
independent of the grid.
The main building blocks in differential geometry are differential forms, which are
anti-symmetric k-tensors acting on vector fields.
Or they are object underneath an integration sign.
In R3 we can write forms as:

α(0) = f (x , y , z)

β(1) = A(x , y , z)dx + B(x , y , z)dy + C(x , y , z)dz

γ(2) = P(x , y , z)dydz + Q(x , y , z)dzdx + R(x , y , z)dxdy

ω(3) = g(x , y , z)dxdydz

Why differential forms?

1 Many operators become metric-free when represented by differential forms;

2 Discrete analogue in terms of chains and cochains from algebraic topology;

3 Closer connection with physics
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Differential forms

How do differential forms differ from scalar and vector fields:

1 point scalar field - zero-form

2 curve vector field - 1-form

3 surface vector field - 2-form

4 volume scalar field - 3-form

β(1) = A(x , y , z)dx + B(x , y , z)dy + C(x , y , z)dz

A 1-form can be integrated over one-dimensional, smooth curves C to give:∫
C
β(1) =

∫
C
A(x , y , z)dx + B(x , y , z)dy + C(x , y , z)dz

This is denoted the pairing between the 1-form and the associated geometric
one-dimensional curve C .

(β(1),C) :=

∫
C
β(1)

Classical vector calculus only works with the coefficients A,B,C , which forms the
vector proxy of 1-forms, and ignores the basis vectors dx , dy , dz. Geometrically
we associate one-forms with curves.
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Differential forms

A 2-form can be integrated over two-dimensional, smooth surfaces S to give:∫
S
γ(2) =

∫
S
P(x , y , z)dydz + Q(x , y , z)dzdx + R(x , y , z)dxdy

or

(γ(2), S) :=

∫
S
γ(2)

This is the duality pairing between a 2-form and the associated geometric
two-dimensional surface S . The vector proxy P,Q,R also represents a vector in
normal vector calculus. But the distinction between 1-forms and 2-forms is lost.
A 3-form can be integrated over volumes V to give:∫

V
ω(3) =

∫
V
g(x , y , z)dxdydz

or

(ω(3),V ) :=

∫
V
ω(3)

Here we associate the duality pairing between the 3-form and the
three-dimensional object.
A 0-form is a normal scalar function and can be integrated over points:∫

P1,...,Pk

α(0) =
k∑

i=1

f (Pk )

or
(α(0),P) := f (P)
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A differential form

The exterior derivative, d , is an operation on k-form, which maps k-forms into
(k + 1)-forms:

dα(0) =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz

Here the vector proxy of dα(0) is grad f .

dβ(1) = (
∂C

∂y
−
∂B

∂z
)dydz + (

∂A

∂z
−
∂C

∂x
)dzdx + (

∂B

∂x
−
∂A

∂y
)dxdy

If u = (A,B,C) the vector proxy of dβ(1) is cur l u.

dγ(2) = (
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
)dxdydz

If v = (P,Q,R) the vector proxy of dγ(2) is div v .
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A differential form

Let’s consider the Poisson equation ∆φ = f as a first order system:

div q = f

grad φ = u

u = q

We can now rewrite the above system using differential geometry to obtain:

dq(2) = f (3)

dφ(0) = u(1)

u(1) = q(2) !!!
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A differential form

Solution: The Hodge-? operator. It maps k-forms onto (n − k)-forms, where n is
the dimension of the ambient space. The Hodge-? operator does not alter the
scalar field or the vector field, but changes the geometric object with which these
fields are associated. Geometrically we can illustrate it with the way we represent
a surface. We could either use the normal vector γ or the two vectors in the plane
α and β.
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Representation of physical quantities: geometric
origin

Fundamental theorem of calculus∫
Ω1
∇ϕ · d~l = ϕ(Ω1

B)− ϕ(Ω1
A)

Kelvin-Stokes theorem∫
Ω2

(∇× ~v) · ~ndS =

∫
∂Ω2

~v · d~l

Gauss theorem∫
Ω3

(∇ · ~v)dV =

∫
∂Ω3

~v · ~ndS
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The non-isotropic diffusion problem

We present a discretisation of the non-isotropic diffusion problem based on a
spectral multi-scale method. In fluid dynamics these problems are known as the
Darcy flow problem, which model single phase, incompressible flow in porous
media. These types of flows appear among others in groundwater dynamics,
petroleum engineering and CO2 storage.
The stationary non-isotropic diffusion problem can take the form:

u = −K∇p
∇ · u = f

Matrix K is a symmetric, positive definite tensor, representing the material

permeability divided by the fluid kinematic viscosity.
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The tools

Differential geometry → Algebraic topology;

Discrete De Rham complex;

Dual cell complex;

Discrete topological conservation laws using coboundary operator;

Approximate constitutive relations
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Geometric structure/cell complex
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Geometric structure/cell complex

Di

Db

Di
~

Db
~

*

*
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Geometrical associations

The objective is:
Associate each discrete physical quantity such that they are consistent in the
topological equations.

The conservation law we are looking at is the continuity equation:

∇ · u = f

and the kinematic equation relating the flux ~u to the gradient of pressure p
weighted with a material coefficient tensor K representing the material
permeability divided by the fluid kinematic viscosity:

u = −K∇p
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Darcy’s model using differential forms

In terms of differential forms Darcy’s model is given as:
The conservation law, which in this case is the continuity equation takes the form:

du(n−1) = f (n)

and the constitutive equation we can write as:

u(n−1) = −Kdp(0)

where n is the dimension of the problem.
Since u in the first equation is outer oriented and inner oriented in the second
equation we need to use the Hodge star operator and we can rewrite the second
equation as:

?u(n−1) = −Kdp(0)
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Darcy’s model using differential forms in 2D

In 2D we can write Darcy’s model:

du(1) = f (2)

?u(1) = −Kdp(0)
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Expansions

The expansions of the different quantities are performed using Lagrange and edge
polynomials.

Lagrange polynomials
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GLL nodal interpolation
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0 if i 6= p

Edge polynomials
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GLL edge interpolation

∫ xp+1
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[1] Edge Functions for Spectral Element Methods, M Gerritsma,

2009.
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Expansions - velocity

u
(1)
h =

N+1∑
i=1

N∑
j=1

uijhi (x)ej(y)

+
N∑
i=1

N+1∑
j=1

vijei (x)hj(y)

hi : Lagrange polynomials based on
Gauss-Lobatto-Legendre

ei : Edge polynomials based on
Gauss-Lobatto-Legendre

u1

u2

u3

u4

u5

u6

v1

v2

v3

v4

v5

v6

p2

p1 p3

p4
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Expansions - pressure

p
(0)
h =

N∑
i=1

N∑
j=1

pij h̃i (x)h̃j(y)

p2

p1 p3

p4
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System of equations

Galerkin:

〈du(1), p(0)〉 = 〈f (2), p(0)〉

〈dp(0), u(1)〉 = (
1

K
? u(1), u(1))
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Results

u = −K∇p K = 1

∇ · u = f

P(x , y) = sin(2πx)sin(2πy)

ux = −2πcos(2πx)sin(2πy)

uy = −2πsin(2πx)cos(2πy)

f = 8πsin(2πx)sin(2πy)
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Results
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Results
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Results

u = −K∇p

K11 = 4 K12 = 3 K21 = 3 K12 = 20

∇ · u = f

P(x , y) = sin(2πx)sin(2πy)

ux =− 2πk11cos(2πx)cos(2πy)+

2πk12sin(2πx)sin(2πy)

uy =− 2πk21cos(2πx)cos(2πy)+

2πk22sin(2πx)sin(2πy)

f =4π2((k11 + k22)sin(2πx)cos(2πy)+

(k12 + k21)cos(2πx)sin(2πy))
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Results
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Results

K11 = (1, 2, 3, 4, 5, 6, 7, 8, 9)

K12 = (0.25, 0.5, 0.75, 1, 0.5, 1, 0.5, 1, 0.5)

K21 = (0.25, 0.5, 0.75, 1, 0.5, 1, 0.5, 1, 0.5)

K22 = (9, 8, 7, 6, 5, 4, 3, 2, 1)
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Results
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Results
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Euler equations

For the Euler equations

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p = 0

∇ · v = 0

we have four invariant quantities:

K =

∫
Ω

1

2
v2dΩ

M =

∫
Ω
vdΩ

V =

∫
Ω
ωdΩ

E =

∫
Ω

1

2
ω2dΩ
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Euler equations
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Euler equations



Dansis
seminar

2018

Spectral
method

Motivation

Framework

DiffGeoDansis

Non-isotropic

Darcy

resultsA

Euler equations
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Euler equations
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