FMV Temadag Levetidsforlængelse af industrielle komponenter

Additiver i sintergods

Sten Millot Senior Technology Manager – Sinter Technology FJ Industries A/S Your reliable partner in powder metal, casting and machining

- About FJ Industries A/S
- The Press & Sinter technology
- LPS Liquid Phase Sintering
 - Fe-based Steel
 - Stainless Steel
 - High Speed Steel



About FJ Industries A/S

- The Press & Sinter technology
- LPS Liquid Phase Sintering
 - Fe-based Steel
 - Stainless Steel
 - High Speed Steel

Overview of FJI production sites

Core technologies

	Developments	Cast and machined components		
Description:	 Pressing / Sintering Fully customized production process, in which powder metal is pressed using a precision tool and afterwards sintered 	 Casting / machining Fully customized production process, in which raw cast components are machined 		
Industry application:	 Highly complex components for a variety of industries 	 Primarily automotive (Tier 1 and 2 suppliers) 		
Production facility:	Denmark, Sweden and China	• China		

Powder Metal

- Cost-efficient serial production
- Net shape parts with complex ٠ geometry & tailor made properties
- Small tolerances with high ٠ repeatability
- Environmental friendly process ٠ with low material waste
- Steel, Stainless steel and Bronze ٠

Powder metal share of revenue

Powder metal components for a broad range of industries

Actuators

lutomation

Automotive

Compressors

Household appliances

Hydraulics

Other

Casting / machining

- Sand, shell and investment castings
- · Various iron and steel grades
- Near net shape
- Medium/large series
- Machined to final shape

Cast, machined metal components mainly for automotive

EGR systems

Engine

Exhaust system

Casting / machining share of revenue

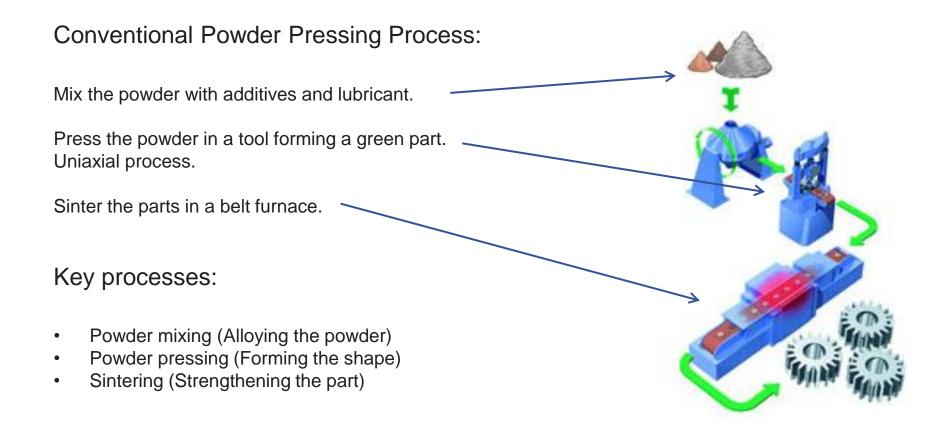
Fuel tanks

Industry (non automotive)

All our production sites are certified according to IATF 16949

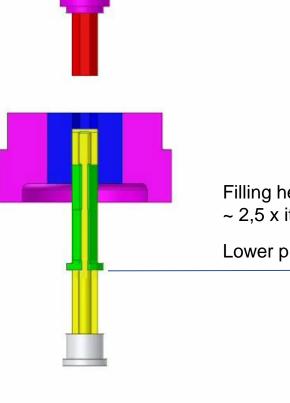
IATF 16949 certification

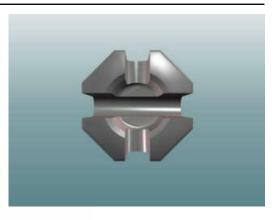
- A worldwide recognized standard related to quality management.
- All processes are conducted in compliance with world class automotive standards.
- A guarantee for professionalism for non-automotive customers


Customer feedback and audits

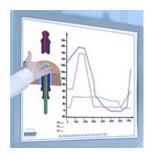
- Continuous dialogue with customers in order to receive feedback on quality and delivery performance.
- Our customers perform audits at our production sites to review the quality.

- About FJ Industries A/S
- The Press & Sinter technology
- LPS Liquid Phase Sintering
 - Fe-based Steel
 - Stainless Steel
 - High Speed Steel



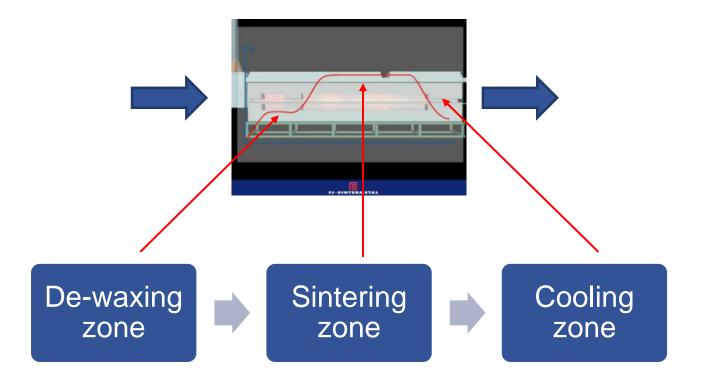


Steps:

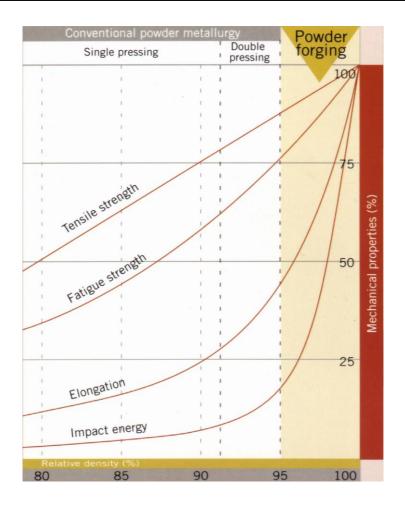

- 1. Filling position
- 2. Closing the tool
- 3. Compressing
- 4. Redraw upper piston
- 5. Ejection from the die
- 6. Withdraw lower core
- 7. Back to filling position

Filling height ~ 2,5 x item height

Lower punches at fixed position

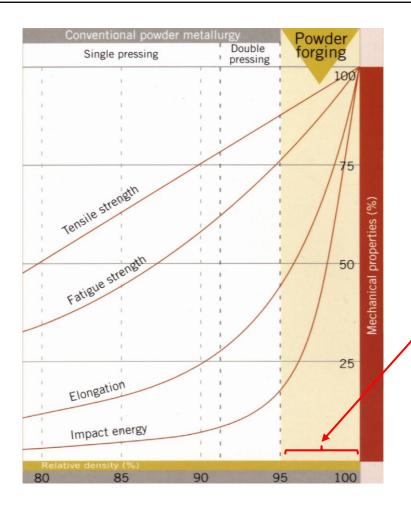


The Press & Sinter technology


The sintering is done in a belt furnace where parts are placed on trays which are transported slowly through the furnace.

Parameter: Time, temperature and atmosphere

The Press & Sinter technology


It is possible to produce components up to 92% of relative density with single pressing and 95% of relative density with double pressing.

Mechanical properties in relation to the relative density improving:

- - Tensile strength
- Fatigue strength
- Elongation and ductility
- Impact energy

The Press & Sinter technology

Question:

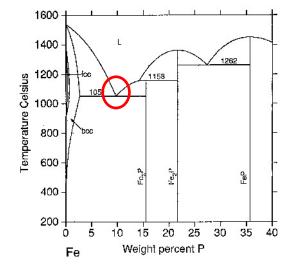
How is it possible to reach this area with relative density between 95 and 100% to get the highest mechanical properties?

Answer:

By using LPS – Liquid Phase Sintering

- About FJ Industries A/S
- The Press & Sinter technology

• LPS – Liquid Phase Sintering

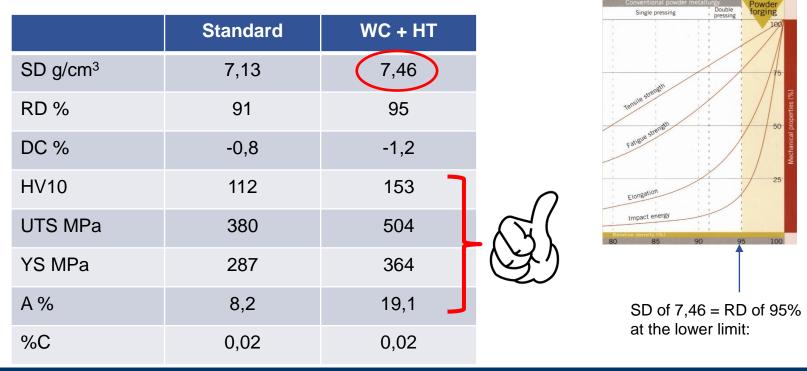

- Fe-based Steel
- Stainless Steel
- High Speed Steel

Adding iron phosphide (Fe_3P) to the mix it is possible to increase the sintering activity.

At 10%P and at 1050°C an eutectic phase occurs and create a liquid phase for a shorter period. The phosphorus defunds into the material and transform to a phase with liquidus.

When the concentration of P reduces again due to P-distribution in iron, a solid phase is created at the surface of the powder particle.

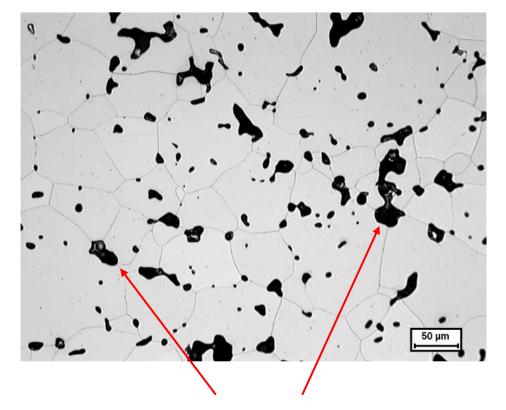
Fe-P phase diagram



LPS – Fe-based Steel

Astaloy Mo + 0,5P [Fe + 1,5% Mo + 0,5% P] (NB: No carbon addition)

Warm compacted at 600 MPa and sintered at 1250 °C in formier gas (90% N_2 + 10% H_2) for 1 hour.


Mechanical properties:

Astaloy Mo + 0,5P [Fe + 1,5% Mo + 0,5% P] (NB: No carbon addition)

Microstructure :

Rounded pores due to LPS and HT sintering 100% ferritic structure

LPS – Stainless Steel

```
316 LHD [17% Cr + 13% Ni + 2,5% Mo – C < 0,03%]
and
SS 100 [19% Cr + 19% Ni + 6,5% Mo – C < 0,03%]
```

The powders are mixed with X% Fe_3P , pressed at 600 MPa and sintered at 1160 °C in pure hydrogen for 1 hour and compared to standard mix without Fe_3P .

References:

Standard	316 LHD	SS 100
SD g/cm ³	6,75	6,72
UTS MPa	270	340
YS MPa	187	246
A %	8,2	6,4
DC %	-0,9	-1,2

Results:

LPS	316 X=4%	316 X=5%	316 X=6%	SS 100 X=4%	SS 100 X=5%	SS 100 X=6%
SD g/cm ³	6,84	7,05	7,19	7,38	7,57	7,69
RD %	87	90	92	94	96	98
UTS MPa	473	498	487	440	468	494
YS MPa	300	329	366	354	398	424
A %	17,0	19,1	13,0	4,9	4,4	4,4
DC %	-1,8	-2,8	-3,4	-3,8	-4,8	-5,1
		Good result elongation				Good result strength

Increased density but also bigger dimensional changes means difficult to keep narrow tolerances.

Mo content have big influence on the sintering activity with Fe_3P addition.

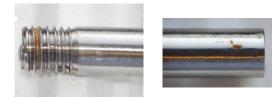
LPS	316 X=4%	316 X=5%	316 X=6%	SS 100 X=4%	SS 100 X=5%	SS 100 X=6%
SD g/cm ³	6,84	7,05	7,19	7,38	7,57	7,69
RD %	87	90	92	94	96	98
Mo content:		2,5 %Mo			6,5 %Mo	

LPS – Stainless Steel

Corrosions test according to ASTM B117 [5% NaCl -35 °C -1 to 2 ml/h -6,5 to 7,2 pH]:

The test with additives gave the best results after 288 hours:

SS100 standard



SS100 with additives

316 standard

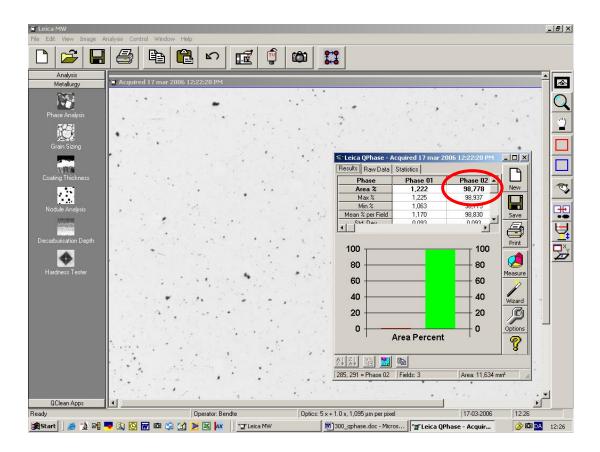
316 with additives

Reference: 316 steel bar

Test preformed by Danfoss Industry Service

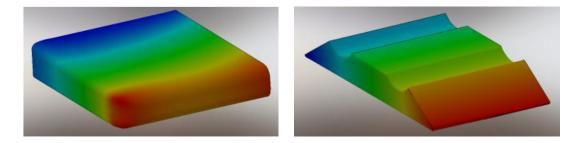
WEARDENS® – chemical composition:

	%C	%Mo	%W	%Cr	%V	%Fe	%Others
Min	0.9	4.5	5.0	3.5	2.5	Bal.	0.4
Max	1.5	10.0	7.0	4.5	3.5	Bal.	1.3


Results:

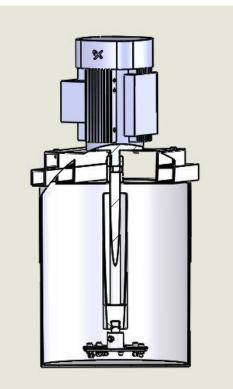
- < 90	ility > +	WEARDENS® No.	Micro hardness [HV0,3]	Macro hardness [HV30]	Density [g/cm3]
stan	stab	4500	900	864	7,87
resistance	on s	6500	887	866	7,98
ear r	nsic	6515	886	871	7,99
We	me	6535	890	857	8,01
∨ +	- v di	6555	965	896	8,04

Theoretical density: 8,41 g/cm³ 7,87 – 8,04 in density => RD 94% - 96%


In practise density measured on Weardens 6500 shows RD of 98,8% using Leica Qphase.

LPS – High Speed Steel

Wear test of Weardens compared to a massif knife for wood chip production: (Wear test performed by students – Ingeniørhøjskolen Aarhus Universitet)



Left: Weardens sample – wright: TKIII knife.

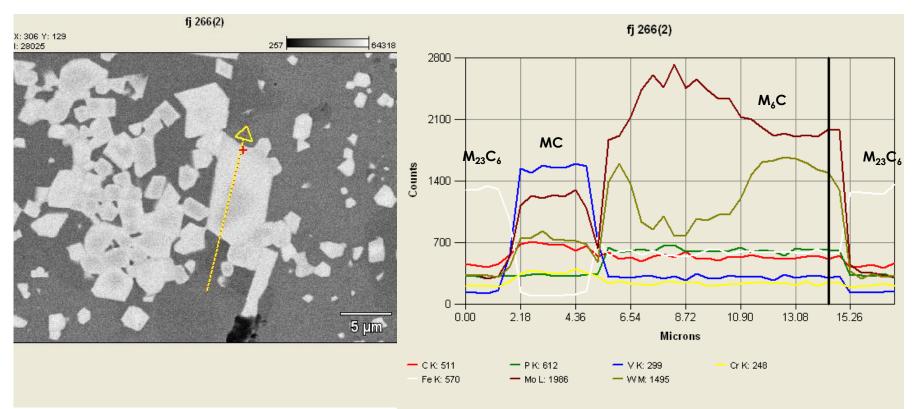
Tested in a slurry of: Bark and wood chips Pebbles / granite Water

Testing time: 12 hours

Results:

	Weight before [g]	Weight after [9]	∆ m [mg]	∆ m [%]	Surface Area (Sa) [cm2]	∆ m / Sa [mg/cm2]
Weardens	129,246	128,820	426	0,329	2,841	149,9
ТКШ	47,643	47,340	303	0,636	1,879	161,3

The Weardens material has better wear resistance - round 7% better in this test.


One of the conclusion in this report is that Weardens has 4,5% longer lifetime than TKIII.

Vi har fundet frem til, at Weardens har bedre slidegenskaber end TK III. Det er beregnet, at Weardens har 4,5 % længere levetid end TK III.

LPS – High Speed Steel

SEM analysis (performed by DTU/RISØ)

Through the cross section high Mo and W rich carbides are detected.

THANK YOU FOR YOUR ATTENTION !

